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A REVIEW OF MARCHING PROCEDURES

FOR PARABOLIZED NAVIER-STOKES EQUATIONS

S.G. Rubin

Department of Aerospace Engineering and Applied Mechanics
University of Cincinnati

Cincinnati, Ohio 45221 U.S.A.

Abstract

Marching techniques for the parabolized Navier Stokes equa-

tions are considered. With the full pressure interaction and

prescribed edge pressure these equations are weakly elliptic in

subsonic zones. A minimum marching step size (Ax min), pro-

portional to the total thickness (yM ) of the subsonic layer,

exists. However, for thin subsonic boundary layers (yM << 1)

and with Ax = 01(YM), stable and accurate solutions are possible.

With forward differencing of the axial pressure gradient the

procedure can be made unconditionally stable; a global iteration

procedure, requiring only the storage of the pressure term, has

been demonstrated for a separated flow problem. Solutions for

incompressible boundary layer-like flows, for internal flows,

and for supersonic flow over a cone at incidence with a coupled

strongly implicit procedure are presented.

1. Introduction

It has now been generally accepted that boundary layer

methodology can be extended to the so-called parabolized Navier-

Stokes (PNS) equations for a significant variety of flow problems.

In a recent paper, Davis and Rubin have reviewed several viscous
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flow computations in which parabolized or thin layer techniques

have been applied in order to accurately determine the flow

characteristics. This publication also reviews some of the

early history of the PNS development.

The purpose of the present paper is to discuss some recent

investigations using the PNS equations. In particular, we are

concerned here with efficient three-dimensional algorithms, a

clearer understanding of the limits of applicability of PNS

marching techniques, and pressure interaction relaxation for

separated flows and other problems where upstream influence is

of importance. In this regard, three solution procedures are

considered: (1) single-sweep "boundary layer-like" marching for

two and three-dimensional flows; (2) multiple sweep iteration or

global pressure relaxation, where upstream influence and possibly

axial flow separation are important, but regions of subsonic

flow are small; and (3) global relaxation where subsonic flow

domains are large. For the latter two classes of problems, the

analysis draws heavily on that of interacting boundary layers

and inviscid subsonic relaxation methods where applicable.

In the course of proceeding to specific examples, a brief

review of the limitations associated with PNS marching or relaxation

is necessary. The PNS equations, which for simplicity are given

here only for "two-dimensional incompressible flow," are as

follows:

u +uu+ vu =-p x U u (la)t + x Y x Ryy
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= 1
v+ uv + vv -p +(-v ),(lb)
t  x  y R yy

u + v = 0. (ic)
x y

R is the Reynolds number; x is denoted the axial flow direction

and y the normal direction. The system (1) differs from the

complete Navier-Stokes equations only by the omission of the

axial diffusion terms. Strictly speaking the inclusion of the

v term in (lb) is inconsistent with the omission of uyy x

in (la). Either the former should be neglected (this is probably

a more appropriate definition of the PNS equations) or the

latter retained. In fact, these terms have little effect on

any of the results presented here. The mathematical character

of (1) is controlled by the px term in (la). When p is pre-

scribed (assumed known), the system is parabolic. This was the

case in the original merged layer analysis of Rudman and Rubin ,

where for hypersonic cold wall flow px can, in fact, be neglected

in (la). It should be emphasized, however, that axial pressure

gradients are still present and are evaluated through the momentum

equation (lb), and the energy equation in the compressible case.

When the p x term in (la) is retained implicitly (not

prescribed), the system (1) is no longer parabolic, as an elliptic

pressure or acoustic interaction occurs in regions of subsonic

1 oflow. The "parabolic" form for the velocities has led to the

expression parabolized Navier-Stokes equations. This pressure

interaction also appears for boundary layer equations, when p

is not prescribed. The resulting upstream interaction has been

3
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analyzed by Lighthill , who demonstrated the existence of

exponential growing solutions in the interaction zone. Similar

behavior has been encountered with marching procedures for the

PNS equations. The primary difference between the boundary

layer and PNS equations is that for the latter the pressure

interaction is manifested through both the outer pressure

boundary formulation and the normal momentum equation (lb).

2. Single Sweep Marching

For problems where upstream influence and axial flow separation

are not significant, it is natural to consider the system (1)

by boundary layer marching techniques, i.e., backward differences

are applied for all x-gradients. If p x is prescribed, this

approach is quite acceptable as the equations are in fact

parabolic. For implicit numerical schemes, the marching calcu-

lation should be unconditionally stable for all Ax marching

steps, see Divis and Rubin1 for additional references. On the

other hand, if p is assumed unknown, the "elliptic" pressure

interaction of Lighthill is introduced and therefore the exponential

growth, representative of upstream influence, can be anticipated.

Lubard and Helliwell 4 have examined the stability of the backward

difference approximation for px in (la) and they have shown that

for Ax < (Ax) min  instability or departure solutions will occur.
5

Similar results were found earlier by Lin and Rubin. For

Ax > (Ax) min  the marching scheme is stable. Therefore (Ax) min

would appear to represent a measure of the upstream elliptic
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interaction. For Ax < (Ax) min the marching scheme attempts tc

represent this interaction and therefore the Lighthill behavior

should be recovered.

Since the backward difference formula for p x does not provide

any upstream contribution, it does not properly represent the

differential form for Ax < (Ax) min  When the backward difference

approximation is less representative of px', the error introduced

serves to reduce (Ax) min For example, at x = xi , (Pi-Pi-2)/Ax

is less severe than (Pi- Pi-i)/Ax, and for px, prescribed,

(AX) min = 0. In view of this behavior, several investigators,

Vigneron et al. 6 , Yanenko et al. 7 and Lin and Rubin 8 have attempted

to eliminate the pressure interaction by incorporating "small"

inconsistencies into the difference approximation. They have

assumed (1) a variable Ax in the difference form for px such

that Ax > (Ax) min locally 6 , (2) "regularization" functions of

the type (1// ) f(ux vx ,px as modified coefficients for the
7

uux and px terms in (la) , and (3) the use of finite temporal

iteration to modify the convection velocity in each step of
8

the marching procedure. Each of these techniques introduces

some inconsistency into the difference equations in subsonic

zones; reasonable results have been obtained with these methods

for certain problems. In order for these techniques to be

effective, the inconsistency must be large enough to suppress

the elliptic character, yet small enough to maintain an acceptable

order of accuracy.

The PNS model has been considered in some detail by Rubin

and Lin. For the system (1) with a backward difference for
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a/Dx and central y differences, the linear von Neumann stability
9

analysis leads to the following condition for the eigenvalues X:

u(-l) + 4b Asin 2 B + I c Xsin(
T (X- 1) F (X) (222

2 0 2 rT
u(X-l) Cos T + 4b Asin T + I c Asin6 4a A sin2

2 2

where a = Ax/Ay, b = Ax/RAy 2, c = av, I = /-T, F = (X-i).

It can be shown that the value of Amax is closely related

to the highest frequency mode, so that when the number of grid

points across the layer N >> 1, a z /(N-I). Equation (2)

then takes the simplified form

(X-1) F(A) - 1

A2 2

where A = IAx/y M and yM is the layer thickness; YM = (N)Ay.

The condition (3) indicates that Ax/yM is the relevant stability

parameter. From (3), the marching procedure will be stable for

A = rAx/yM > 2

Therefore

(AX)min : YM (4)

The complete numerical solution of (2), for all 8, has been

obtained, and the analytic result (Ax)min  2 YM is confirmed.

The extent of the elliptic numerical interaction is of the order

of the thickness of the total layer. If the system (1) is used

to solve boundary layer problems, then YM )(R-I/2 and

* I 6



therefore (Ax)mi = 0 1 /2). For interaction regions where

triple deck 11 structure is applicable, (Ax)mi =2 =M0( 8

3
or the extent of the Lighthill upstream influence. This would

tend to confirm the idea of a limited elliptic zone contained

in the PNS formulation. For Ax > (Ax) min' this elliptic effect

is suppressed. When the upstream influence is negligible, this

inconsistency should have little effect on the solution. For

truly interactive flows the ellipticity must be retained and the

global forward-difference concept discussed in the next section

is required.

The results for the PNS and other "transonic" equations

clearly indicate that step sizes of the order of the subsonic

region, which for supersonic mainstreams is O(R
- / 2 ) or 0(Re- 3/ 8)

in a triple deck region, will provide stable and accurate

solutions for flows in which upstream effects are not dominant.

In a later section, where a strongly implicit algorithm is intro-

duced to obtain marching solutions for the supersonic flow over a

cone at incidence, this (Ax) min dependency on YM will be shown

for the compressible PNS equations.

3. Multiple Sweep Marching-Global Iteration

If consistency, for Ax - 0, of the difference formulation is

to be achieved, or if upstream influence is important and/or

separation occurs, then backward differencing of the px term

should be rejected. With any form of forward or central dif-

ferencing for px' relaxation (multiple marching sweeps or global

iteration) is required. Three possibilities will be discussed:

7
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(1) forward differencing, (2) central differencing, and (3) use

of the Poisson equation for pressure.

Forward differencing for px introduces the upstream value

pi+ 1,which is prescribed in each marching sweep, and also has

the advantage of including the local pressure value pi. This

provides for coupling of the pressure-velocity system (1) and

allows for a free surface pressure interaction. This is important

for problems where axial flow separation occurs.

At this point, a few remarks concerning the role of the px

term for separated flow are relevant. In recent years there

has been considerable analysis of free pressure-boundary layer

interactions for separated flows.10  There is general agreement

that, for limited separation bubbles, boundary layer equations

can be used to calculate such flows. Moreover, the singularity

at separation does not appear if the p'(x) term is not prescribed

but allowed to develop. Inverse methods, in which the displacement

thickness or shear stress is prescribed during the marching step

and then updated in subsequent relaxation sweeps have been

considered, as have procedures in which temporal terms are

retained in order to introduce the pressure or displacement

thickness implicitly. In these procedures, the p'(x) term is

replaced with an interaction expression (displacement slope for

supersonic flow1 0 or Cauchy integral for subsonic flow11 ). The

local pressure or displacement thickness then appears implicitly

and is coupled with the velocity evaluation. In all of these

interaction analyses, those components of the px approximation

8



that introduce upstream terms are updated during the relaxation

sweeps.

From interacting boundary layer analysis we can then

conclude that if the elliptic character is to be modeled consis-

tently, the p x representation for the PNS equations should

introduce downstream contributions. If the separation singularity

is to be circumvented in any relaxation sweep, a free pressure

interaction through the outer boundary condition or through

the y-momentum equation (lb) must be introduced. Forward

differencing would appear to satisfy both of these constraints.

The stability analysis for equations (1) has been extended in

reference 9 for a variety of px approximations. For forward

differencing of px' the stability condition (4) is modified

solely by the factor F(X), such that F(X) = -X. From (4) it

can be inferred that for 8 = ir/N-I, this procedure is uncon-

ditionally stable. The stability curves for general a values are

given in reference 9. Forward differencing is unconditionally

stable for all a at all R. It is significant, however, that as

the convective velocity v increases both eigenvalues asymptote

to one. So that stability is marginal when the subsonic region

is large.

During the first sweep of the global iteration procedure

the value pi+l must be prescribed by an initial guess. Pi+l can

be chosen as a constant equal to the boundary condition at the

outer boundary, or the surface, or some combination thereof.

Since the variation of p across the subsonic layer is small, any

of these values will generally suffice.

9



In order to test the applicability of forward differencing

for p x two boundary layer problems have been considered with the

full PNS system (1):

(i) Flat Plate: u = p = 1 at Y = YM

u=v=0 at y=0.

(ii) Separation Bubble: u = p = 1, x < 0
=U1=at

u = l-uxp uu , 0 < x < 0.25 } y t

u = 0.75, Px 
= 0, x > 0.25 

Y=Y

u= v =0 at y =0.

The pressure gradient p x is forward differenced. All other x

derivatives are backward differenced. These are neglected in

regions of reverse flow. All y derivatives are central

differenced, except for the continuity equation (1c) and momentum

equation (lb) where the trapezoidal rule is used. Multiple

sweeps or global iteration was stable and converged for

(Ax) min  (YM/6); the value of (Ax) min = YM/60 was also tested

and with forward differencing was stable. It is significant that

in this relaxation procedure it is necessary to store only the

pressure field for each successive iteration level. The velocities

are re-evaluated during each marching sweep. The results are in

excellent agreement with published results for both problems.

The free surface pressure interaction introduced by the y-moemntum

equation has eliminated the separation singularity for the bubble

10



problem. The value of Ax equal to one-sixth the boundary layer

thickness YM 0(R 1 /2) appears to be adequate. For the smaller
value of (Ax)mi n = yM/60 or with yM i.e., the

triple deck interaction length, rather than R-1/2 the boundary

layer length scale, some variations in the solution were obtained.

These are not given here. From the stability results, we note

that the value of Ax can be made arbitrarily small; however,

for the present examples, this is unnecessary. For the cone

geometry, to be considered in a following section, considerably

smaller values of Ax are used. Some typical results for the

boundary layer examples are shown in figures (1) to (4).

Fig. 1

Fig. 2

Fig. 3

Fig. 4

11



For the flat plate case, comparisons between the PNS and

Blasius solution are shown, for R = 103 and 10 7, in figure (1)

for the velocity components, and in figure (2) for the surface

skin friction coefficient Cf. The agreement is quite reasonable.

The maximum error occurs at the surface and this can be seen

from the figures. Additional results for the pressure variation

across the boundary layer are given in reference 9. The pressure

pi+l is updated during each sweep of the global iteration

procedure. For the initial iteration Pi+l(x,y) was taken equal

to the prescribed edge value; i.e., p(x i+1 y) = P(X

During the relaxation process small pressure variations are

calculated across the boundary layer. The qualitative agreement

with the third-order Blasius pressure distribution is good.
9

Solutions for the separation bubble case are given in figure (3)

for typical isovels, and in figure (4) for the surface pressure

variation. The predicted separation point value of x sep = 0.1180

is close to the boundary layer value of 0.1198. Both separation

and reattachment points exhibited smooth transitions and con-

vergence. Since the outer boundary conditions were fixed and the

second-order Cauchy integral displacement condition was not

imposed, the free interaction was manifested solely through the

y-momentum equation (lb). Inclusion of the displacement boundary

condition should have a slight effect on the solutions. Con-

vergence of the global relaxation procedure is quite rapid.
9

Only five to ten iterations are required. Of course, for the

problems considered here the pressure variation across the layer

12



is small so that the initial guess is quite good. In view of

the stability analysis previously discussed, and since the PNS

system includes all of the elements of both boundary layer and

triple deck equations, the present solutions with YM = 0(R-3/ 8)

should reproduce the results obtained with these approximations.

Detailed comparisons will be the subject of future studies.

If central differencing is used for p x the downstream point

Pi+l is introduced once again; however, the value pi no longer

appears and the y-momentum equation will be uncoupled from the

velocities unless pi is re-introduced. Several possibilities

exist: (1) pi appears directly through the outer boundary

condition, as in interacting boundary layer theory;
10'11

(2) a temporal relaxation term p T is introduced in (la). This

has been used in ADI solutions for interacting boundary layers;
1 0

(3) a K-R1 2 approximation, where forward differencing is corrected

during the relaxation sweeps, is applied.

From the stability analysis for each sweep of the marching

procedure, it is seen that with central differencing, the function

F(M) = -1 in (2). This is an unconditionally unstable condition

and therefore further reinforces the need for a pi contribution.

With an appropriate pi contribution F(X) = (aX-i), where a

reflects the pi term. From (2), the marching procedure is

stabilized conditionally for all a # 0 (recall the earlier

(Ax) mi condition for a = 1); however, for a < -1, unconditional

stability results. Actual experience with the various x

approximations for the compressible PNS system is discussed in a

following section on flow over a cone at incidence.

13
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Finally, a stability analysis for convergence of the global

iteration procedure has also been considered. When px is

treated implicitly, to some degree, preliminary conclusions are

that convergence is assured. On the other hand, if px is

treated explicitly, i.e., from a previous marching solution,

it would appear that the global iteration procedure will

diverge. The pressure results solely from the uncoupled normal

momentum equation (lb).

4. Global Iteration for Subsonic Flow

For problems where subsonic regions are not confined to thin

layers, single sweep backward differencing for p x will generally

not be reliable since the stability condition requires that

Ax > (Ax) min = 0(yM ) = 0(l). Therefore, global relaxation for

the pressure interaction is required in all cases.

Two procedures for calculating such flows have been considered.

In the first, the pressure interaction is evaluated with the

Poisson form of the pressure equation. In the second, which is

currently under development, the pressure is coupled directly

to the elliptic velocity solver by a splitting procedure in the

spirit of Dodge. 1 3 There are a number of significant differences

however that allow for a completely consistent global relaxation

formulation. For both of these formulations a Poisson operator

appears explicitly in the equations and therefore the elliptic

character of the equations is further strengthened. Only the

former approach shall be described here in any detail. Solutions

are presented for an asymmetric channel having a moderate

14



constriction. The complete analysis is given in reference 14.

A short review is presented here.

Equations (la) and (lb) are rewritten in the form:

=F -u1X t

P =F -vPy 2 t

so that differentiating and adding we find

V p =Flx + F - (ux + vy)t  (5)

The continuity equation (1c) is replaced with (5). In the global

iteration procedure the condition (1c) is applied in obtaining

appropriate boundary values for p and this equation is satisfied

through the convergence of the pressure solver.

The primary differences between this method or the velocity-

sp!it approach for subsonic flows, and the global pressure

relaxation procedure described previously for thin subsonic

regions are two-fold: (1) the pressure gradient in the momentum

equations are treated as given from the previous iteration and

therefore the pressure calculation is uncoupled from that for the

velocities, and (2) the global relaxation includes not only the

pressure but the velocities as well. In view of the temporal

gradients appearing in (la), (lb) and (5), all variables are

required from previous iterations. Solutions cannot be obtained

in the steady state mode (At= -) discussed in the previous

section; A line relaxation procedure coupling (5) with (la),

(ib) was not tested. The pressure equations were solved

15



independently with an ADI or SOR technique. The temporal

gradients in (la) and (ib) allow for smooth passage through

separated flow regions.

A typical solution is shown in figure (5). These PNS

solutions are compared with full Navier-Stokes results in

reference 14. The agreement is good, as the axial diffusion

effects are quite small even in the regions of separated flow.

This provides another example where steady state marching

procedures, with global pressure relaxation, can be used

effectively to solve the PNS equations or Navier-Stokes

equations where the influence of axial diffusion is small. A

similar approach for unbounded subsonic regions is being tested

with the velocity-split method mentioned previously.

Fig. 5

5. Example: Cone at Incidence - Supersonic Flow

In order to test the global pressure relaxation procedure

for the complete compressible PNS equations, the supersonic

flow over a sharp cone at incidence has been considered.15  The

pressure gradient px in (la) has been approximated with forward,

central and backward (single sweep) differences. Lubard and

4 5,8Helliwell and Lin and Rubin among others have already

investigated the latter case. Our primary interest in this

regard is to evaluate the limiting value of (Ax) min in each of

the cases and to determine whether the forward difference

16



approximation~ retains the effective unconditional stability

predicted in the previous analysis.

In a recent study, Schiff and Steger 16have presented a

global iteration method, but not with the intent of treating

problems where upstream interaction or axial flow separation

are important. An estimate for p is obtained by an initial

backward sweep with Ax > (Ax) min* Subsequently, p is treated

as known from the previous iterative value of p. In addition,

the sublayer approximation presented by Rubin and Lin (see

reference 5) is applied in order to reduce (Ax) min ; i.e.,p

is assiued constant across the subsonic portion of the boundary

layer. As noted earlier, the convergence analysis for procedures

in which Px is treated explicitly, i.e., from the previous sweep,

would indicate that these global relaxation methods are unstable.

In reference 16 the appearance of oscillations is noted after

four global iterations.

A second important feature of the present analysis, that is

described in detail in reference 15, is the application of the

17coupled strongly implicit procedure of Rubin and Rhosla for

the cross plane (normal to the axial flow or x direction) solution.

This is considered to be an improvement over ADI or SOR or other

splitting techniques as there is an immediate coupling of all

the boundaries, i.e., shock, body, lee and wind planes. The

strongly implicit character of the algorithm also appears desirable

for capturing imbedded shock waves and for evaluating secondary

flow separation at larger angles of incidence. In addition,

17



from earlier studies1 7 convergence rates are improved, a direct

steady-state solution is possible, and artificial dissipation

has not been required for iterative convergence.

The compressible PNS equations are given by an expanded

form of (1) with appropriate energy and state equations. All

x derivatives are backward or K-R12 differenced except for px

which is forward or central differenced in certain cases. A

sublayer approximation is not assumed. All y derivatives are

central differenced. The trapezoidal rule is used for the

continuity and y-momentum equations. Boundary layer-like marching

is applied in the x-direction; the normal velocity v is prescribed

only at the surface. The outer value of v is coupled with and

determined by the Rankine-Hugoniot conditions at the shock.

This condition also provides for mass conservation in the shock

layer.

The strongly implicit algorithm1 7 is used to couple the

velocities u, v, w for the calculation in the (ya) cross-plane.

The temperature is obtained independently from a similar algorithm

and the pressure is updated from the normal (y) momentum equation.

The strongly implicit algorithm is of the form:

V.= GMij +T Vii +T2 V. (6)V Mi jITlij ' i j . i,j+l(6

where

Vij = ().

18



The algorithm (6) is scalarized to improve computational effi-

ciency. The coefficients GM ij, (1,2)ij are determined from

recursive formulas whereby

GMi3. = f(GMi I G5M. j_,.. (7)

17

etc. The boundary conditions on all surfaces are imposed

either in (6) or (7). Symmetry conditions are used for the

wind and lee planes and the Rankine-Buqoniot relations are

imposed at the outer shock wave.

Typical solutions are given in figures (6) and (7) for the

shock layer thickness and the heat transfer coefficient.

Convergence criteria are 10 - for V and 10 for p and T. The

difference grid was quite coarse in the cross plane, 41x 31 points.

With finer grids the accuracy can be improved. 15 For x/6(x) > 2,

where 6(x) is the shock layer thickness, the subsonic layer

thickness yM < 0.2 6. Several numerical experiments were made

in order to estimate the values of (Ax) in. The results are

given in Table 1. Converged results were obtained with central

differencing for several marching steps; however, the solutions

were oscillatory and extremely inaccurate. When these calculations

were continued further, the instability predicted by the

Fig. 6

Fig. 7
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relation (4) soon leads to divergence of the solution. With the

backward and forward differences, behavior similar to that

found for the incompressible equation (1) was recovered here.

For the backward p x calculations, (Ax) min appears to be approaching

an asymptotic limit as R increases. For the incompressible

4problem, at R = 10 , (Ax)min/yM z 0.22, as opposed to the value

0.25 obtained for the cone flow. For the forward px calculations,

the present results confirm those for the incompressible equation;

i.e., unconditional stability. Finally, a very weak stability

condition on Ax is obtained when the modified "forward-difference"

condition is applied, see Table 1. As seen from the solutions

presented here, this approximation is quite good for the cone

geometry. Solutions for angles of incidence up to 450 are

presented in reference 15. .

R 10 3 10 4

Backward px 0.2 0.25

Modified l0- 3  2 x 10- 4

"Forward" p

Forward px 0 0

Unstable for Unstable forCentral Px 0(1) 0(1)

Table 1. Estimated Values of (Ax) /YM; M = 7.95;
18. mi M

20



6. Summary

The parabolized Navier-Stokes equations have been considered

for subsonic and supersonic flows. It has been shown that with

single sweep marching and backward differencing for all axial

derivatives, including the pressure, the elliptic influence

is numerically suppressed for marching steps Ax > (Ax)min z YM

where YM is the thickness of the subsonic zone. For subsonic

boundary layers or the PNS equations with supersonic outer flow

conditions, YM = 0(R- 1I/2) and therefore (Ax)min = 0(R-
1 /2 ).

For triple deck regions, YM 
= 0(R-3/8) or (Ax) min = 0(R-3/

8).

For problems with large regions of subsonic flow (Ax) min = 0(i)

and large truncation errors can be expected.

If global relaxation is considered, i.e., multiple marching

sweeps, then central differencing for px is unstable, but forward

px differencing is unconditionally stable. Forward differencing

also has the desirable property of allowing for a complete

pressure coupling with the velocities and a free surface pressure

interaction. Therefore, separation regions can be evaluated with

this global relaxation method. Examples for a flat plate boundary

layer and for a separation bubble have been presented.

For supersonic outer flows the global relaxation method

requires only that the pressure be retained from the previous

iteration. Therefore, computer storage is minimal. With large

regions of subsonic flow, a global iteration method is also

presented; however, pressure and velocity data is required in

this procedure and therefore computer storage will be increased.

21



Solutions are presented for separated channel flow.

Numerical experiments have been conducted for the super-

sonic flow over a cone at incidence. A coupled strongly implicit

numerical algorithm was applied with backward, central and

forward differencing for px. The solutions confirm the analytic

stability results for the incompressible equations. Backward

differencing is conditionally stable (Ax > (Ax)min Z yM);

central differencing is unstable, and forward differencing is

unconditionally stable. In view of the results obtained herein,

we conclude that for flows, with thin subsonic layers, forward

differencing for the p x term leads to an optimal global pressure

relaxation procedure, with free pressure interaction and minimum

stability limitations. Global relaxation solutions have been

obtained for subsonic flows; however, optimization of such

techniques requires further study.
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